Answer:
Option B
Explanation:
Let the equation of the plane is
$\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=1$
Then, A($\alpha$,0,0) , B(0,$\beta$, 0),and C(0,0,$\gamma$) are the points on the coordinates axes, The centroid of the triangle is (1,2,4)
$\therefore$ $\frac{\alpha}{3}=1 \Rightarrow \alpha=3$
$\frac{\beta}{3}=2 \Rightarrow \beta=6$
and $\frac{\gamma}{3}=2 \Rightarrow \gamma=12$
$\therefore$ The equation of the plane is
$\frac{x}{3}+\frac{y}{6}+\frac{z}{12}=1$
$\Rightarrow$ $4x+2y+z=12$